
By Russ McRee – ISSA member, Puget Sound (Seattle), USA Chapter

toolsmith

Prerequisites
Java Runtime Environment

ZAP runs on Linux, Mac OS X, and Windows

Happy Thanksgiving: “As we express our gratitude, we must
never forget that the highest appreciation is not to utter
words, but to live by them.” - JFK

INovember 2011’s toolsmith is the 61st in the series for the
ISSA Journal, thus marking five years of extensive tools
analysis for information security practitioners. Thank

you for coming along for the ride.

Fresh on the heels of a successful presentation on “OWASP
Top 10 Tools and Tactics” at an even more successful ISSA In-
ternational Conference in Baltimore, I was motivated to give
full coverage this month to the OWASP Zed Attack Proxy,
better known as ZAP. I had presented ZAP as a tool of choice
when assessing OWASP Top Ten A1 – Injection, but, as so
many of the tools discussed, ZAP delivers plenty of additional
functionality worthy of in-depth discussion.

OWASP ZAP is a fork of the once favored Paros Proxy, which
has not been updated since August 2006. As such, it should be
noted with no small irony that we covered Paros in December
2006. This is an excellent opportunity to show you how far
ZAP has come from the original project.

ZAP is the result of Simon Bennetts’ (Psiinon) hard work,
though he’s got help from co-lead Axel Neumann (@a_c_
neumann) and many contributors.1

As an official OWASP project, ZAP enjoys extensive use and
development support as an “easy to use integrated penetration
testing tool for finding vulnerabilities in web applications.”2

Simon offered a veritable plethora of feedback for this article,
as provided throughout the rest of the introduction. He in-
dicated that he originally released ZAP specifically for devel-
opers and functional testers – a group which he believes is
poorly represented in the security tools market.

Ease of use was a prime concern, as was documentation, and
to his surprise it turned out that it was the security folk who
took up ZAP the quickest, providing great feedback, report-

1	 http://code.google.com/p/zaproxy/people/list.

2	 http://code.google.com/p/zaproxy/.

ing issues, and asking for lots of enhance-
ments. Simon still wants ZAP to be ideal
for people new to web application security,
but it’s also going to be enhanced with more and more ad-
vanced features aimed at profession penetration testers.

Simon also wanted ZAP to be a community project; there are
many open source security tools that are tightly controlled by
one individual or company. While he doesn’t have a problem
with that fact, he does believe that the real strength of open
source comes when anyone can contribute to a project and
take it in directions its initial developers never envisaged.

Anyone and everyone is welcome to contribute to ZAP, and
not necessarily coding only; they welcome help with testing,
documentation, localization, issues identification, and en-
hancement requests. Help spread the word as well via articles,
reviews, videos, blogs, Twitter, etc.

ZAP is also one of the few open source security tools to be
fully internationalized. It has been translated into 10 lan-
guages, and download statistics indicate that approximately
half of the ZAP users worldwide are likely to be non-native
English speakers.

ZAP is intended to provide everything that you need to per-
form a penetration test on a web application. If you are new
to web application security, then it might be the only security
tool you need. However, if you’re an experienced penetration
tester be sure to include it as one of the many tools in your
toolbox. As such, the development team is trying to make it
as easy as possible to integrate ZAP with other tools. They
provide a way to invoke other applications from within ZAP,
passing across the current context. In version 1.3 they intro-
duced an API which allows the core ZAP functionality to be
invoked by a REST API, and will be extended to cover even
more of ZAP’s features in future releases.

This is an ideal way for other applications to directly drive
ZAP, and can be used when ZAP is running in “headless”
mode (i.e. without the UI).

They’ve also put together a POC showing how ZAP can be
used by developers to include basic security tests in their con-
tinuous integration framework and be alerted to potential
security vulnerabilities within hours of checking code.3

3	 http://code.google.com/p/bodgeit/wiki/RegTests.

OWASP ZAP – Zed Attack Proxy

ISSA Journal | November 2011

39©2011 Information Systems Security Association • www.issa.org • editor@issa.org • Permission for author use only.

http://code.google.com/p/zaproxy/people/list
http://code.google.com/p/zaproxy/
https://connect.issa.org/community/techsec/blog/2011/11/01/toolsmith-owasp-zap

40

toolsmith: OWASP ZAP - Zed Attack Proxy | Russ McRee

Simon and team don’t believe in reinventing the
wheel, which is why they always seek high quality
open source components to reuse before imple-
menting a new feature from scratch. As such, the
brute force/forced browsing support is provided via
DirBuster4 and fuzzing makes use of the JBroFuzz5
libraries (both OWASP projects).

Amongst the more advanced features that users
might not be aware of is that ZAP keeps track of all
of the anti-CSRF tokens it finds. If fuzzing a form
with an anti CSRF-token in it, ZAP can regenerate
the token for each of the payloads you fuzz with.
There’s also an experimental option that allows this
to be turned on when using the active scanner as
well. I can say that quality CSRF testing is not com-
monplace among ZAP’s web application testing
contemporaries.

For ZAP version 1.4 the development team has de-
cided to focus on:

•	 Improving the active and passive scanners

•	 Improving stability (especially for large
sites)

•	 Session token analysis

In July 2011 ZAP was evaluated and designated as a
“stable” OWASP project, the highest level currently
available. Further, OWASP projects are now being restruc-
tured; ZAP has been designated as one of the small number
of “flagship” projects.

Rightfully so; thank you, Simon.

Let’s run ZAP through its paces.

ZAP installation and configuration
ZAP is installation is very simple. Once unpacked on your
preferred platform, invoke ZAP from the application icon
or at the command prompt via the appropriate executable.
A current Java Runtime Environment is a requirement as all
the executables (EXE, BAT, SH) invoke java –jar zap.jar
org.zaproxy.xap.ZAP.

Most importantly ZAP, runs as a proxy. Configure your pre-
ferred browser to proxy via localhost and the default port of
8088. I change the port to 8088 to avoid conflict with other
proxies and services. You can change the port under Tools 
Options  Local proxy if you run multiple proxies that you
bounce between during assessments. I do and as such I use
the Firefox add-on FoxyProxy to quickly dial in my proxy of
choice.

You must also generate an SSL certificate in order to use and
test SSL-enabled sites. You will be prompted to do when run-
ning ZAP for the first time.

4	 https://www.owasp.org/index.php/Category:OWASP_DirBuster_
Project.

5	 https://www.owasp.org/index.php/JBroFuzz.

ZAP use
In addition to the aforementioned Security Regression Tests
for developers, the OWASP ZAP project offers ZAP Web Ap-
plication Vulnerability Examples, or ZAP WAVE. Download
it and drop zap-wave.war in the webapps directory of your
favorite servlet engine. On Debian/Ubuntu systems sudo
apt-get install tomcat6 will get you in business with
said servlet engine quickly. In addition to a LAMP stack on
an Ubuntu 11.10 VM, I run Tomcat for just such occasions.
OWASP WebGoat also runs as a standalone test bed or via a
servlet engine.

Enable ZAP, with your browser configured to proxy through
it, then navigate to the system (VM or real steel) host-
ing ZAP WAVE, usually on port 8080. As an example:
http://192.168.140.137:8080/zapwave/.

ZAP WAVE includes “active” vulnerabilities such as cross-
site scripting and SQL injection as well as “passive” vulnera-
bilities including three types of information leakage and two
session vulnerabilities. There are also pending false positives
that are not yet ready for primetime.

The developers recommend that you explore the target app
with ZAP enabled as a proxy, and touch as much of it as pos-
sible before spidering. Doing so helps ZAP find more vulns as
you may cross paths with error messages, etc.

I typically visit the root of the application hierarchy for a web
application I wish to assess, right-click on it, select Attack,
then Spider site. This crawls the entire site hierarchy and pop-
ulates the tree view under the Sites tab in ZAP’s left pane as
seen in Figure 1.

Figure 1 – ZAP spidering

ISSA Journal | November 2011

©2011 Information Systems Security Association • www.issa.org • editor@issa.org • Permission for author use only.

https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
https://www.owasp.org/index.php/JBroFuzz

41

toolsmith: OWASP ZAP - Zed Attack Proxy | Russ McRee

The Port Scan feature is also useful. It will select the in-scope
host by default; just click the Port Scan tab then the start but-
ton.

The Brute Force tab is a function of the above-mentioned
DirBuster component and includes seven dictionary lists to
choose from. I ran this against my full host VM rather just
the servlet element and included the dictionary-list-1.0 dic-
tionary for a simple, quick test (Figure 4).

One of my favorite ZAP features (there are many) is the Fuzz-
er. Per the Fuzzer component guidance:

•	 Select a request in the Sites or History tab

•	 Highlight the string you wish to fuzz in the Request
tab

•	 Right click in the Request tab and select Fuzz...

•	 Select the Fuzz Category and one or more Fuzzers

•	 Press the Fuzz button

The results are listed in the Fuzzer tab; select them to see the
full requests and responses.

The fuzzer, like the scanner, includes functionality which
causes ZAP to automatically regenerate the tokens when re-
quired. I ran Fuzzer against http://192.168.140.137:8080/za-

Crawling/spidering can have unintended side-effects on an
application, even adding or deleting records in a database, so
be advised.

A good crawl ensures a better active scan,
but before beginning a scan, set your Scan
Policy via Analyze  Scan Policy as seen in
Figure 2. You may wish to more narrowly
scope your scan activity to just the likes of
information gathering or SQL injection as
seen in Figure 2.

Spidering and scan policy configuration
complete, right click the root, or a specific
node you wish to assess as you can choose
Attack  Active scan site or Attack  Active
scan node. You can also exclude a site from
the scope in a similar fashion.

A full scan of the ZAP WAVE instance
completed in very short order; results were
immediate as seen in Figure 3.

ZAP includes the expected Encode/Decode/Hash function-
ality via Edit  Encode/Decode/Hash or Tools  Encode/De-
code/Hash along with a manual editor for generating manual
requests. I’ll often run ZAP for nothing more than encoding,
decoding, and hashing; it’s a great utility.

Figure 2 – ZAP scan policy

Figure 3 – ZAP scan results

Figure 4 – ZAP DirBuster at work

ISSA Journal | November 2011

©2011 Information Systems Security Association • www.issa.org • editor@issa.org • Permission for author use only.

42

toolsmith: OWASP ZAP - Zed Attack Proxy | Russ McRee

%3CIMG+SRC%3D%60javascript%3Aalert%28%22RSna
ke+says%23%23%23+%27XSS%27%22%29%60%3E

Or, courtesy of the handy ZAP decoder: <IMG
SRC=̀ javascript:alert(“RSnake says###
‘XSS’”)̀ >

Mr. Slowloris HTTP DoS� himself causing grind even
here. ;-)

In conclusion
ZAP deserves its status as an OWASP flagship project.
Whether you’re a seasoned veteran or new to the web
application security game, make the Zed Attack Proxy
part of your arsenal. I’d go so far as to say, as 2011 is
winding down, that ZAP feels like a likely front run-
ner for 2011 Toolsmith Tool of the Year. But that is for
you to decide, dear reader. Let me know if you agree.

Ping me via email if you have questions (russ at holis-
ticinfosec dot org).

Cheers…until next month.

Acknowledgements
—Simon Bennetts (Psiinon) for project feedback and details

—Axel Neumann (@a_c_neumann) for draft review

About the Author
Russ McRee, GCIH, GCFA, GPEN, CISSP, is team leader and
senior security analyst for Microsoft’s Online Services Security
Incident Management team. As an advocate of a holistic ap-
proach to information security, Russ’ website is holisticinfosec.
org. Contact him at russ at holisticinfosec dot org.

pwave/active/xss/xss-form-anti-csrf.jsp and fuzzed the an-
ticsrf and name variables as it is a recent addition per the
ZAP WAVE download site.

As seen in Figure 5, the fuzzer offers a wider array fuzzers
within a given category.

In the understanding that fuzzing is the art of submitting a
great deal of invalid or unexpected data to a target, you can
look for variations in results such as response code (200 OK)
and response times. Where normal response times per re-
quest average between 2ms and 4ms for ZAP WAVE hosted
on a local VM, one request in particular stood out at a 402ms
response time. I checked for the string passed and cracked up.

Figure 5 – ZAP fuzzer config

ISSA Journal | November 2011

©2011 Information Systems Security Association • www.issa.org • editor@issa.org • Permission for author use only.

mailto:russ%40holisticinfosec.org?subject=

